Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 242
Filter
1.
Infect Immun ; 92(1): e0033423, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38099658

ABSTRACT

Infection by the enteric pathogen Shigella flexneri requires transit through the gastrointestinal tract and invasion of and replication within the cells of the host colonic epithelium. This process exposes the pathogen to a range of diverse microenvironments. Furthermore, the unique composition and physical environment of the eukaryotic cell cytosol represents a stressful environment for S. flexneri, and extensive physiological adaptations are needed for the bacterium to thrive. In this work, we show that disrupting synthesis of the stringent response alarmone (p)ppGpp in S. flexneri diminished expression of key virulence genes, including ipaA, ipaB, ipaC, and icsA, and it reduced bacterial invasion and intercellular spread. Deletion of the (p)ppGpp synthase gene relA alone had no effect on S. flexneri virulence, but disruption of both relA and the (p)ppGpp synthase/hydrolase gene spoT resulted in loss of (p)ppGpp synthesis and virulence. While the relA spoT deletion mutant was able to invade a cultured human epithelial cell monolayer, albeit at reduced levels, it was unable to maintain the infection and spread to adjacent cells, as indicated by loss of plaque formation. Complementation with spoT on a plasmid vector restored plaque formation. Thus, SpoT alone is sufficient to provide the necessary level of (p)ppGpp for virulence. These results indicate that (p)ppGpp is required for S. flexneri virulence and adaptation to the intracellular environment, adding to the repertoire of signaling pathways that affect Shigella pathogenesis.


Subject(s)
Bacterial Proteins , Guanosine Pentaphosphate , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence/genetics , Guanosine Pentaphosphate/metabolism , Shigella flexneri , Cells, Cultured
2.
Curr Microbiol ; 81(1): 34, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064019

ABSTRACT

Persister cells are responsible for recurrent or chronic infections resulting in antibiotic treatment failure. We aimed to investigate antibiotic efficacy in Escherichia coli and Klebsiella pneumoniae strains with limited metabolic activity. Bacterial cells cultured in nutrient-limited media showed characteristic persister phenotypes, including low intracellular ATP concentration, maintenance of antibiotic susceptibility, and an increase of (p)ppGpp levels. Amikacin showed no bactericidal activity under nutrient limitation conditions; however, metabolism-dependent ciprofloxacin exhibited metabolism-independent activity. The activity of colistin was metabolism-dependent, but it was retained under limited nutrient conditions. Nutrient limitation and antibiotic stress were related to the SOS response through recA expression in all four strains of E. coli and K. pneumoniae. However, the mRNA expression patterns of relA and spoT (associated with (p)ppGpp synthesis) and hpf and rpoS (downstream target genes of (p)ppGpp signaling) varied according to bacterial species, strain, and antibiotics, indicating diverse responses to nutrient stress in various persister cells. We also investigated the efficacy of antibiotic combinations to eradicate persister cells. As a result, colistin-based combinations were effective in the eradication of both E. coli and K. pneumoniae persister cells. In this study, persister cells were shown to be induced by metabolic stress, reducing antibiotic efficacy. We identified that combinations of colistin with amikacin or ciprofloxacin were effective to eliminate E. coli and K. pneumoniae persister cells.


Subject(s)
Anti-Bacterial Agents , Colistin , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Escherichia coli , Klebsiella pneumoniae , Amikacin/pharmacology , Guanosine Pentaphosphate/metabolism , Guanosine Pentaphosphate/pharmacology , Ciprofloxacin/pharmacology , Microbial Sensitivity Tests
3.
PLoS Genet ; 19(11): e1010882, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38011258

ABSTRACT

Upon nutrient depletion, bacteria stop proliferating and undergo physiological and morphological changes to ensure their survival. Yet, how these processes are coordinated in response to distinct starvation conditions is poorly understood. Here we compare the cellular responses of Caulobacter crescentus to carbon (C), nitrogen (N) and phosphorus (P) starvation conditions. We find that DNA replication initiation and abundance of the replication initiator DnaA are, under all three starvation conditions, regulated by a common mechanism involving the inhibition of DnaA translation. By contrast, cell differentiation from a motile swarmer cell to a sessile stalked cell is regulated differently under the three starvation conditions. During C and N starvation, production of the signaling molecules (p)ppGpp is required to arrest cell development in the motile swarmer stage. By contrast, our data suggest that low (p)ppGpp levels under P starvation allow P-starved swarmer cells to differentiate into sessile stalked cells. Further, we show that limited DnaA availability, and consequently absence of DNA replication initiation, is the main reason that prevents P-starved stalked cells from completing the cell cycle. Together, our findings demonstrate that C. crescentus decouples cell differentiation from DNA replication initiation under certain starvation conditions, two otherwise intimately coupled processes. We hypothesize that arresting the developmental program either as motile swarmer cells or as sessile stalked cells improves the chances of survival of C. crescentus during the different starvation conditions.


Subject(s)
Caulobacter crescentus , DNA-Binding Proteins , DNA-Binding Proteins/genetics , Caulobacter crescentus/genetics , Caulobacter crescentus/metabolism , Phosphates/metabolism , Guanosine Pentaphosphate/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Replication/genetics , Cell Cycle/genetics , Cell Differentiation
4.
Curr Opin Microbiol ; 76: 102398, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866203

ABSTRACT

In response to environmental cues, bacteria produce intracellular nucleotide messengers to regulate a wide variety of cellular processes and physiology. Studies on individual nucleotide messengers, such as (p)ppGpp or cyclic (di)nucleotides, have established their respective regulatory themes. As research on nucleotide signaling networks expands, recent studies have begun to uncover various crosstalk mechanisms between (p)ppGpp and other nucleotide messengers, including signal conversion, allosteric regulation, and target competition. The multiple layers of crosstalk implicate that (p)ppGpp is intricately linked to different nucleotide signaling pathways. From a physiological perspective, (p)ppGpp crosstalk enables fine-tuning and feedback regulation with other nucleotide messengers to achieve optimal adaptation.


Subject(s)
Guanosine Pentaphosphate , Nucleotides , Guanosine Pentaphosphate/metabolism , Second Messenger Systems/physiology , Cyclic GMP/metabolism , Signal Transduction , Gene Expression Regulation, Bacterial , Bacterial Proteins/metabolism
5.
mSphere ; 8(5): e0024923, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37750686

ABSTRACT

Persistent infection by Staphylococcus aureus has been linked to the bacterial stringent response (SR), a conserved stress response pathway regulated by the Rel protein. Rel synthesizes (p)ppGpp "alarmones" in response to amino acid starvation, which enables adaptation to stress by modulating bacterial growth and virulence. We previously identified five novel protein-altering mutations in rel that arose in patients with persistent methicillin-resistant S. aureus bacteremia. The mutations mapped to both the enzymatic and regulatory protein domains of Rel. Here, we set out to characterize the phenotype of these mutations to understand how they may have been selected in vivo. After introducing each mutation into S. aureus strain JE2, we analyzed growth, fitness, and antibiotic profiles. Despite being located in different protein domains, we found that all of the mutations converged on the same phenotype. Each shortened the time of lag phase growth and imparted a fitness advantage in nutritionally depleted conditions. Through quantification of intracellular (p)ppGpp, we link this phenotype to increased SR activation, specifically during the stationary phase of growth. In contrast to two previously identified clinical rel mutations, we find that our rel mutations do not cause antibiotic tolerance. Instead, our findings suggest that in vivo selection was due to an augmented SR that primes cells for growth in nutrient-poor conditions, which may be a strategy for evading host-imposed nutritional immunity. Importance Host and pathogen compete for available nutrition during infection. For bacteria, the stringent response (SR) regulator Rel responds to amino acid deprivation by signaling the cell to modulate its growth rate, metabolism, and virulence. In this report, we characterize five rel mutations that arose during cases of persistent methicillin-resistant Staphylococcus aureus bacteremia. We find that all of the mutations augmented SR signaling specifically under nutrient-poor conditions, enabling the cell to more readily grow and survive. Our findings reveal a strategy used by bacterial pathogens to evade the nutritional immunity imposed by host tissues during infection.


Subject(s)
Bacteremia , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/genetics , Guanosine Pentaphosphate/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Mutation , Staphylococcal Infections/microbiology , Nutrients , Amino Acids/genetics
6.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569327

ABSTRACT

DksA is a proteobacterial regulator that binds directly to the secondary channel of RNA polymerase with (p)ppGpp and is responsible for various bacterial physiological activities. While (p)ppGpp is known to be involved in the regulation and response of fatty acid metabolism pathways in many foodborne pathogens, the role of DksA in this process has yet to be clarified. This study aimed to characterize the function of DksA on fatty acid metabolism and cell membrane structure in Yersinia enterocolitica. Therefore, comparison analysis of gene expression, growth conditions, and membrane permeabilization among the wide-type (WT), DksA-deficient mutant (YEND), and the complemented strain was carried out. It confirmed that deletion of DksA led to a more than four-fold decrease in the expression of fatty acid degradation genes, including fadADEIJ. Additionally, YEND exhibited a smaller growth gap compared to the WT strain at low temperatures, indicating that DksA is not required for the growth of Y. enterocolitica in cold environments. Given that polymyxin B is a cationic antimicrobial peptide that targets the cell membrane, the roles of DksA under polymyxin B exposure were also characterized. It was found that DksA positively regulates the integrity of the inner and outer membranes of Y. enterocolitica under polymyxin B, preventing the leakage of intracellular nucleic acids and proteins and ultimately reducing the sensitivity of Y. enterocolitica to polymyxin B. Taken together, this study provides insights into the functions of DksA and paves the way for novel fungicide development.


Subject(s)
Escherichia coli Proteins , Yersinia enterocolitica , Polymyxin B/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Yersinia enterocolitica/genetics , Yersinia enterocolitica/metabolism , Guanosine Pentaphosphate/metabolism , Cell Membrane/metabolism , Fatty Acids , Gene Expression Regulation, Bacterial , Escherichia coli Proteins/metabolism
7.
Microbiol Spectr ; 11(4): e0510022, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37289081

ABSTRACT

The stringent response enables bacteria to survive nutrient starvation, antibiotic challenge, and other threats to cellular survival. Two alarmone (magic spot) second messengers, guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp), which are synthesized by RelA/SpoT homologue (RSH) proteins, play central roles in the stringent response. The pathogenic oral spirochete bacterium Treponema denticola lacks a long-RSH homologue but encodes putative small alarmone synthetase (Tde-SAS, TDE1711) and small alarmone hydrolase (Tde-SAH, TDE1690) proteins. Here, we characterize the respective in vitro and in vivo activities of Tde-SAS and Tde-SAH, which respectively belong to the previously uncharacterized RSH families DsRel and ActSpo2. The tetrameric 410-amino acid (aa) Tde-SAS protein preferentially synthesizes ppGpp over pppGpp and a third alarmone, pGpp. Unlike RelQ homologues, alarmones do not allosterically stimulate the synthetic activities of Tde-SAS. The ~180 aa C-terminal tetratricopeptide repeat (TPR) domain of Tde-SAS acts as a brake on the alarmone synthesis activities of the ~220-aa N-terminal catalytic domain. Tde-SAS also synthesizes "alarmone-like" nucleotides such as adenosine tetraphosphate (ppApp), albeit at considerably lower rates. The 210-aa Tde-SAH protein efficiently hydrolyzes all guanosine and adenosine-based alarmones in a Mn(II) ion-dependent manner. Using a growth assays with a ΔrelAΔspoT strain of Escherichia coli that is deficient in pppGpp/ppGpp synthesis, we demonstrate that Tde-SAS can synthesize alarmones in vivo to restore growth in minimal media. Taken together, our results add to our holistic understanding of alarmone metabolism across diverse bacterial species. IMPORTANCE The spirochete bacterium Treponema denticola is a common component of the oral microbiota. However, it may play important pathological roles in multispecies oral infectious diseases such as periodontitis: a severe and destructive form of gum disease, which is a major cause of tooth loss in adults. The operation of the stringent response, a highly conserved survival mechanism, is known to help many bacterial species cause persistent or virulent infections. By characterizing the biochemical functions of the proteins putatively responsible for the stringent response in T. denticola, we may gain molecular insight into how this bacterium can survive within harsh oral environments and promote infection. Our results also expand our general understanding of proteins that synthesize nucleotide-based intracellular signaling molecules in bacteria.


Subject(s)
Guanosine Pentaphosphate , Guanosine Tetraphosphate , Humans , Guanosine Pentaphosphate/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Treponema denticola/genetics , Ligases/genetics , Ligases/metabolism , Hydrolases/metabolism , Nucleotides , Adenosine , Gene Expression Regulation, Bacterial
8.
Microbiol Spectr ; 11(4): e0182623, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37367300

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are widely recognized as bacterial adaptive immune systems against invading viruses and bacteriophages. The oral pathogen Streptococcus mutans encodes two CRISPR-Cas loci (CRISPR1-Cas and CRISPR2-Cas), and their expression under environmental conditions is still under investigation. In this study, we investigated the transcriptional regulation of cas operons by CcpA and CodY, two global regulators that contribute to carbohydrate and (p)ppGpp metabolism. The possible promoter regions for cas operons and the binding sites for CcpA and CodY in the promoter regions of both CRISPR-Cas loci were predicted using computational algorithms. We found that CcpA could directly bind to the upstream region of both cas operons, and detected an allosteric interaction of CodY within the same region. The binding sequences of the two regulators were identified through footprinting analysis. Our results showed that the promoter activity of CRISPR1-Cas was enhanced under fructose-rich conditions, while deletion of the ccpA gene led to reduced activity of the CRISPR2-Cas promoter under the same conditions. Additionally, deletion of the CRISPR systems resulted in a significant decrease in fructose uptake ability compared to the parental strain. Interestingly, the accumulation of guanosine tetraphosphate (ppGpp) was reduced in the presence of mupirocin, which induces a stringent response, in the CRISPR1-Cas-deleted (ΔCR1cas) and both CRISPR-Cas-deleted (ΔCRDcas) mutant strains. Furthermore, the promoter activity of both CRISPRs was enhanced in response to oxidative or membrane stress, while the CRISPR1 promoter activity was reduced under low-pH conditions. Collectively, our findings demonstrate that the transcription of the CRISPR-Cas system is directly regulated by the binding of CcpA and CodY. These regulatory actions play a crucial role in modulating glycolytic processes and exerting effective CRISPR-mediated immunity in response to nutrient availability and environmental cues. IMPORTANCE An effective immune system has evolved not only in eukaryotic organisms but also in microorganisms, enabling them to rapidly detect and neutralize foreign invaders in the environment. Specifically, the CRISPR-Cas system in bacterial cells is established through a complex and sophisticated regulatory mechanism involving specific factors. In this study, we demonstrate that the expression of two CRISPR systems in S. mutans can be controlled by two global regulators, CcpA and CodY, which play critical roles in carbohydrate metabolism and amino acid biosynthesis. Importantly, our results show that the expression of the CRISPR-Cas system in S. mutans influences (p)ppGpp production during the stringent response, which is a gene expression regulatory response that aids in environmental stress adaptation. This transcriptional regulation by these regulators enables a CRISPR-mediated immune response in a host environment with limited availability of carbon sources or amino acids, while ensuring efficient carbon flux and energy expenditure to support multiple metabolic processes.


Subject(s)
CRISPR-Cas Systems , Streptococcus mutans , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Guanosine Pentaphosphate/metabolism , Promoter Regions, Genetic , Fructose/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
9.
Int J Mol Sci ; 24(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108773

ABSTRACT

The stringent response is a rapid response system that is ubiquitous in bacteria, allowing them to sense changes in the external environment and undergo extensive physiological transformations. However, the regulators (p)ppGpp and DksA have extensive and complex regulatory patterns. Our previous studies demonstrated that (p)ppGpp and DksA in Yersinia enterocolitica positively co-regulated motility, antibiotic resistance, and environmental tolerance but had opposite roles in biofilm formation. To reveal the cellular functions regulated by (p)ppGpp and DksA comprehensively, the gene expression profiles of wild-type, ΔrelA, ΔrelAΔspoT, and ΔdksAΔrelAΔspoT strains were compared using RNA-Seq. Results showed that (p)ppGpp and DksA repressed the expression of ribosomal synthesis genes and enhanced the expression of genes involved in intracellular energy and material metabolism, amino acid transport and synthesis, flagella formation, and the phosphate transfer system. Additionally, (p)ppGpp and DksA inhibited amino acid utilization (such as arginine and cystine) and chemotaxis in Y. enterocolitica. Overall, the results of this study unraveled the link between (p)ppGpp and DksA in the metabolic networks, amino acid utilization, and chemotaxis in Y. enterocolitica and enhanced the understanding of stringent responses in Enterobacteriaceae.


Subject(s)
Escherichia coli Proteins , Yersinia enterocolitica , Guanosine Pentaphosphate/metabolism , Yersinia enterocolitica/genetics , Yersinia enterocolitica/metabolism , Transcriptome , Chemotaxis/genetics , Amino Acids/metabolism , Gene Expression Regulation, Bacterial , Escherichia coli Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
10.
Infect Immun ; 91(4): e0043222, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36920208

ABSTRACT

It has recently become evident that the bacterial stringent response is regulated by a triphosphate alarmone (pGpp) as well as the canonical tetra- and pentaphosphate alarmones ppGpp and pppGpp [together, (p)ppGpp]. Often dismissed in the past as an artifact or degradation product, pGpp has been confirmed as a deliberate endpoint of multiple synthetic pathways utilizing GMP, (p)ppGpp, or GDP/GTP as precursors. Some early studies concluded that pGpp functionally mimics (p)ppGpp and that its biological role is to make alarmone metabolism less dependent on the guanine energy charge of the cell by allowing GMP-dependent synthesis to continue when GDP/GTP has been depleted. However, recent reports that pGpp binds unique potential protein receptors and is the only alarmone synthesized by the intestinal pathogen Clostridioides difficile indicate that pGpp is more than a stand-in for the longer alarmones and plays a distinct biological role beyond its functional overlap (p)ppGpp.


Subject(s)
Guanosine Pentaphosphate , Nucleotides , Guanosine Pentaphosphate/metabolism , Bacterial Proteins/metabolism , Guanosine Tetraphosphate/metabolism , Guanosine Triphosphate/metabolism
11.
Sci Rep ; 13(1): 2727, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810577

ABSTRACT

Bacterial second messengers c-di-GMP and (p)ppGpp have broad functional repertoires ranging from growth and cell cycle control to the regulation of biofilm formation and virulence. The recent identification of SmbA, an effector protein from Caulobacter crescentus that is jointly targeted by both signaling molecules, has opened up studies on how these global bacterial networks interact. C-di-GMP and (p)ppGpp compete for the same SmbA binding site, with a dimer of c-di-GMP inducing a conformational change that involves loop 7 of the protein that leads to downstream signaling. Here, we report a crystal structure of a partial loop 7 deletion mutant, SmbA∆loop in complex with c-di-GMP determined at 1.4 Å resolution. SmbA∆loop binds monomeric c-di-GMP indicating that loop 7 is required for c-di-GMP dimerization. Thus the complex probably represents the first step of consecutive c-di-GMP binding to form an intercalated dimer as has been observed in wild-type SmbA. Considering the prevalence of intercalated c-di-GMP molecules observed bound to proteins, the proposed mechanism may be generally applicable to protein-mediated c-di-GMP dimerization. Notably, in the crystal, SmbA∆loop forms a 2-fold symmetric dimer via isologous interactions with the two symmetric halves of c-di-GMP. Structural comparisons of SmbA∆loop with wild-type SmbA in complex with dimeric c-di-GMP or ppGpp support the idea that loop 7 is critical for SmbA function by interacting with downstream partners. Our results also underscore the flexibility of c-di-GMP, to allow binding to the symmetric SmbA∆loop dimer interface. It is envisaged that such isologous interactions of c-di-GMP could be observed in hitherto unrecognized targets.


Subject(s)
Cyclic GMP , Guanosine Pentaphosphate , Dimerization , Ligands , Guanosine Pentaphosphate/metabolism , Cyclic GMP/metabolism , Bacterial Proteins/metabolism
12.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835415

ABSTRACT

The stringent response, originally identified in Escherichia coli as a signal that leads to reprogramming of gene expression under starvation or nutrient deprivation, is now recognized as ubiquitous in all bacteria, and also as part of a broader survival strategy in diverse, other stress conditions. Much of our insight into this phenomenon derives from the role of hyperphosphorylated guanosine derivatives (pppGpp, ppGpp, pGpp; guanosine penta-, tetra- and tri-phosphate, respectively) that are synthesized on starvation cues and act as messengers or alarmones. These molecules, collectively referred to here as (p)ppGpp, orchestrate a complex network of biochemical steps that eventually lead to the repression of stable RNA synthesis, growth, and cell division, while promoting amino acid biosynthesis, survival, persistence, and virulence. In this analytical review, we summarize the mechanism of the major signaling pathways in the stringent response, consisting of the synthesis of the (p)ppGpp, their interaction with RNA polymerase, and diverse factors of macromolecular biosynthesis, leading to differential inhibition and activation of specific promoters. We also briefly touch upon the recently reported stringent-like response in a few eukaryotes, which is a very disparate mechanism involving MESH1 (Metazoan SpoT Homolog 1), a cytosolic NADPH phosphatase. Lastly, using ppGpp as an example, we speculate on possible pathways of simultaneous evolution of alarmones and their multiple targets.


Subject(s)
Guanosine Pentaphosphate , Guanosine Tetraphosphate , Animals , Guanosine Pentaphosphate/genetics , Guanosine Pentaphosphate/metabolism , Guanosine Tetraphosphate/metabolism , Ligands , Escherichia coli/metabolism , Guanosine , Gene Expression Regulation, Bacterial , Bacterial Proteins/metabolism
13.
Nucleic Acids Res ; 51(2): 852-869, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36617997

ABSTRACT

Ligand-binding RNAs (RNA aptamers) are widespread in the three domains of life, serving as sensors of metabolites and other small molecules. When aptamers are embedded within RNA transcripts as components of riboswitches, they can regulate gene expression upon binding their ligands. Previous methods for biochemical validation of computationally predicted aptamers are not well-suited for rapid screening of large numbers of RNA aptamers. Therefore, we utilized DRaCALA (Differential Radial Capillary Action of Ligand Assay), a technique designed originally to study protein-ligand interactions, to examine RNA-ligand binding, permitting rapid screening of dozens of RNA aptamer candidates concurrently. Using this method, which we call RNA-DRaCALA, we screened 30 ykkC family subtype 2a RNA aptamers that were computationally predicted to bind (p)ppGpp. Most of the aptamers bound both ppGpp and pppGpp, but some strongly favored only ppGpp or pppGpp, and some bound neither. Expansion of the number of biochemically verified sites allowed construction of more accurate secondary structure models and prediction of key features in the aptamers that distinguish a ppGpp from a pppGpp binding site. To demonstrate that the method works with other ligands, we also used RNA DRaCALA to analyze aptamer binding by thiamine pyrophosphate.


Subject(s)
Aptamers, Nucleotide , Biochemistry , Guanosine Pentaphosphate , Aptamers, Nucleotide/chemistry , Binding Sites , Guanosine Pentaphosphate/metabolism , Ligands , Riboswitch , RNA, Bacterial/genetics , Biochemistry/methods
14.
mBio ; 14(1): e0340422, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36625599

ABSTRACT

As rapidly growing bacteria begin to exhaust essential nutrients, they enter a state of reduced growth, ultimately leading to stasis or quiescence. Investigation of the response to nutrient limitation has focused largely on the consequences of amino acid starvation, known as the "stringent response." Here, an uncharged tRNA in the A-site of the ribosome stimulates the ribosome-associated protein RelA to synthesize the hyperphosphorylated guanosine nucleotides (p)ppGpp that mediate a global slowdown of growth and biosynthesis. Investigations of the stringent response typically employ experimental methodologies that rapidly stimulate (p)ppGpp synthesis by abruptly increasing the fraction of uncharged tRNAs, either by explicit amino starvation or by inhibition of tRNA charging. Consequently, these methodologies inhibit protein translation, thereby interfering with the cellular pathways that respond to nutrient limitation. Thus, complete and/or rapid starvation is a problematic experimental paradigm for investigating bacterial responses to physiologically relevant nutrient-limited states.


Subject(s)
Guanosine Pentaphosphate , RNA, Transfer , Guanosine Pentaphosphate/metabolism , RNA, Transfer/genetics , Ribosomes/metabolism , Amino Acids/metabolism , Protein Biosynthesis , Ribosomal Proteins/genetics , Guanosine Tetraphosphate/metabolism
15.
Angew Chem Int Ed Engl ; 62(8): e202213279, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36524454

ABSTRACT

Diadenosine polyphosphates (Apn As) are non-canonical nucleotides whose cellular concentrations increase during stress and are therefore termed alarmones, signaling homeostatic imbalance. Their cellular role is poorly understood. In this work, we assessed Apn As for their usage as cosubstrates for protein AMPylation, a post-translational modification in which adenosine monophosphate (AMP) is transferred to proteins. In humans, AMPylation mediated by the AMPylator FICD with ATP as a cosubstrate is a response to ER stress. Herein, we demonstrate that Ap4 A is proficiently consumed for AMPylation by FICD. By chemical proteomics using a new chemical probe, we identified new potential AMPylation targets. Interestingly, we found that AMPylation targets of FICD may differ depending on the nucleotide cosubstrate. These results may suggest that signaling at elevated Ap4 A levels during cellular stress differs from when Ap4 A is present at low concentrations, allowing response to extracellular cues.


Subject(s)
Guanosine Pentaphosphate , Proteins , Humans , Guanosine Pentaphosphate/metabolism , Proteins/metabolism , Adenosine Monophosphate/metabolism , Dinucleoside Phosphates/metabolism , Protein Processing, Post-Translational
16.
New Phytol ; 237(4): 1086-1099, 2023 02.
Article in English | MEDLINE | ID: mdl-36349398

ABSTRACT

The nucleotides guanosine tetraphosphate and guanosine pentaphosphate (together (p)ppGpp) are found in a wide range of prokaryotic and eukaryotic organisms where they are associated with stress signalling. In this review, we will discuss recent research highlighting the role of (p)ppGpp signalling as a conserved regulator of photosynthetic activity in the chloroplasts of plants and algae, and the latest discoveries that open up new perspectives on the emerging roles of (p)ppGpp in acclimation to environmental stress. We explore how rapid advances in the study of (p)ppGpp signalling in prokaryotes are now revealing large gaps in our understanding of the molecular mechanisms of signalling by (p)ppGpp and related nucleotides in plants and algae. Filling in these gaps is likely to lead to the discovery of conserved as well as new plant- and algal-specific (p)ppGpp signalling mechanisms that will offer new insights into the taming of the chloroplast and the regulation of stress tolerance.


Subject(s)
Guanosine Pentaphosphate , Guanosine Tetraphosphate , Guanosine Tetraphosphate/metabolism , Guanosine Pentaphosphate/metabolism , Photosynthesis , Plants/metabolism , Chloroplasts/metabolism
17.
Semin Cell Dev Biol ; 136: 3-12, 2023 02 28.
Article in English | MEDLINE | ID: mdl-35331628

ABSTRACT

Biogenesis of ribosomes is one of the most cost- and resource-intensive processes in all living cells. In bacteria, ribosome biogenesis is rate-limiting for growth and must be tightly coordinated to yield maximum fitness of the cells. Since bacteria are continuously facing environmental changes and stress conditions, they have developed sophisticated systems to sense and regulate their nutritional status. Amino acid starvation leads to the synthesis and accumulation of the nucleotide-based second messengers ppGpp and pppGpp [(p)ppGpp], which in turn function as central players of a pleiotropic metabolic adaptation mechanism named the stringent response. Here, we review our current knowledge on the multiple roles of (p)ppGpp in the stress-related modulation of the prokaryotic protein biosynthesis machinery with the ribosome as its core constituent. The alarmones ppGpp/pppGpp act as competitors of their GDP/GTP counterparts, to affect a multitude of ribosome-associated P-loop GTPases involved in the translation cycle, ribosome biogenesis and hibernation. A similar mode of inhibition has been found for the GTPases of the proteins involved in the SRP-dependent membrane-targeting machinery present in the periphery of the ribosome. In this sense, during stringent conditions, binding of (p)ppGpp restricts the membrane insertion and secretion of proteins. Altogether, we highlight the enormously resource-intensive stages of ribosome biogenesis as a critical regulatory hub of the stringent response that ultimately tunes the protein synthesis capacity and consequently the survival of the cell.


Subject(s)
Guanosine Pentaphosphate , Guanosine Tetraphosphate , Guanosine Tetraphosphate/metabolism , Guanosine Pentaphosphate/metabolism , Bacterial Proteins/metabolism , Ribosomes/metabolism , GTP Phosphohydrolases/metabolism , Bacteria/metabolism
18.
mBio ; 13(6): e0242222, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36472432

ABSTRACT

Small alarmone hydrolases (SAHs) are alarmone metabolizing enzymes found in both metazoans and bacteria. In metazoans, the SAH homolog Mesh1 is reported to function in cofactor metabolism by hydrolyzing NADPH to NADH. In bacteria, SAHs are often identified in genomes with toxic alarmone synthetases for self-resistance. Here, we characterized a bacterial orphan SAH, i.e., without a toxic alarmone synthetase, in the phytopathogen Xanthomonas campestris pv. campestris (XccSAH) and found that it metabolizes both cellular alarmones and cofactors. In vitro, XccSAH displays abilities to hydrolyze multiple nucleotides, including pppGpp, ppGpp, pGpp, pppApp, and NADPH. In vivo, X. campestris pv. campestris cells lacking sah accumulated higher levels of cellular (pp)pGpp and NADPH compared to wild-type cells upon amino acid starvation. In addition, X. campestris pv. campestris mutants lacking sah were more sensitive to killing by Pseudomonas during interbacterial competition. Interestingly, loss of sah also resulted in reduced growth in amino acid-replete medium, a condition that did not induce (pp)pGpp or pppApp accumulation. Further metabolomic characterization revealed strong depletion of NADH levels in the X. campestris pv. campestris mutant lacking sah, suggesting that NADPH/NADH regulation is an evolutionarily conserved function of both bacterial and metazoan SAHs and Mesh1. Overall, our work demonstrates a regulatory role of bacterial SAHs as tuners of stress responses and metabolism, beyond functioning as antitoxins. IMPORTANCE Small alarmone hydrolases (SAHs) comprise a widespread family of alarmone metabolizing enzymes. In metazoans, SAHs have been reported to control multiple aspects of physiology and stress resistance through alarmone and NADPH metabolisms, but their physiological functions in bacteria is mostly uncharacterized except for a few reports as antitoxins. Here, we identified an SAH functioning independently of toxins in the phytopathogen Xanthomonas campestris pv. campestris. We found that XccSAH hydrolyzed multiple alarmones and NADPH in vitro, and X. campestris pv. campestris mutants lacking sah displayed increased alarmone levels during starvation, loss of interspecies competitive fitness, growth defects, and strong reduction in NADH. Our findings reveal the importance of NADPH hydrolysis by a bacterial SAH. Our work is also the first report of significant physiological roles of bacterial SAHs beyond functioning as antitoxins and suggests that SAHs have far broader physiological roles and share similar functions across domains of life.


Subject(s)
Guanosine Pentaphosphate , Xanthomonas campestris , Animals , Guanosine Pentaphosphate/metabolism , Hydrolases , Bacterial Proteins/metabolism , NADP , NAD , Bacteria/metabolism , Amino Acids
19.
J Mater Chem B ; 10(45): 9438-9445, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36321529

ABSTRACT

Antibiotic tolerance and resistance in bacteria have caused a great threat to humankind. Bacteria can rapidly accumulate alarmone nucleotides (guanosine tetra- and pentaphosphate, usually denoted as (p)ppGpp) to repair damaged DNA under adverse conditions. The inhibition synthetase enzyme activity of (p)ppGpp, indirectly preventing synthesis, or promoting degradation, has been reported; however, transferring these strategies to practical applications is still a challenging task due to the lack of highly effective molecules for these purposes. Here, an approach based on molecularly imprinted polymer nanoparticles (MIP-NPs) as antibiotic adjuvants was proposed, where MIP-NPs with specific recognition sites were used to capture alarmone nucleotides released by bacteria during stringent response activation. Enhanced inhibition rates of 40-80% were achieved in the presence of the MIP-NPs. The dose of antibiotic could be greatly reduced by utilizing the MIP-NPs as adjuvants for a similar deactivation effectiveness. Good biocompatibility (no obvious hemolysis or cytotoxic effects) and apparent antimicrobial efficiency for resisting wound infection in vivo support the fact that well-designed MIP-NPs have a bright future in dealing with the growing threat of antibiotic tolerance and resistance.


Subject(s)
Guanosine Pentaphosphate , Nanoparticles , Guanosine Pentaphosphate/metabolism , Anti-Bacterial Agents/pharmacology , Nucleotides , Bacteria/metabolism
20.
Antimicrob Agents Chemother ; 66(12): e0093822, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36346240

ABSTRACT

The stringent response (SR) is a universal stress response that acts as a global regulator of bacterial physiology and virulence, and is a contributor to antibiotic tolerance and resistance. In most bacteria, the SR is controlled by a bifunctional enzyme, Rel, which both synthesizes and hydrolyzes the alarmone (p)ppGpp via two distinct catalytic domains. The balance between these antagonistic activities is fine-tuned to the needs of the cell and, in a "relaxed" state, the hydrolase activity of Rel dominates. We have previously shown that two single amino acid substitutions in Rel (that were identified in clinical isolates from persistent infections) confer elevated basal concentrations of (p)ppGpp and consequent multidrug tolerance in Staphylococcus aureus. Here, we explore the molecular details of how these mutations bring about this increase in cellular (p)ppGpp and investigate the wider cellular consequences in terms of resistance expression, resistance development, and bacterial fitness. Using enzyme assays, we show that both these mutations drastically reduce the hydrolase activity of Rel, thereby shifting the balance of Rel activity in favor of (p)ppGpp synthesis. We also demonstrate that these mutations induce high-level, homogeneous expression of ß-lactam resistance and confer a significant fitness advantage in the presence of bactericidal antibiotics (but a fitness cost in the absence of antibiotic). In contrast, these mutations do not appear to accelerate the emergence of endogenous resistance mutations in vitro. Overall, our findings reveal the complex nature of Rel regulation and the multifaceted implications of clinical Rel mutations in terms of antibiotic efficacy and bacteria survival.


Subject(s)
Guanosine Pentaphosphate , Staphylococcus aureus , Guanosine Pentaphosphate/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Bacteria , Hydrolases/genetics , Mutation/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...